FUEL INJECTORS

IMPORTANT INFORMATION ABOUT FUEL INJECTORS

Important Information About Technical Specifications

- Bosch fuel injectors have their flow rates defined in N-Heptane as part of their engineering specification. N-Heptane is a pure chemical and does not have the same viscosity and density as standard petrol. Hence the N-Heptane flow rate figures stated should be used as a general guide for comparison purposes only.
- For safety reasons, Bosch strongly recommends that Local and/or Federal Government health and safety regulations are adhered to when using or handling any of the mentioned test fluids.
- Stated "Operating Pressure" is the pressure that the fuel injector is designed to operate at to give optimal fuel atomisation and control. This is more critical to the EV1 pintle type fuel injectors.
- Whilst it is common industry practice to request static flow rate only of a fuel injector, it is important to note that one type of valve group with a specific static flow rate can be used for a number of fuel injectors with different dynamic flow rates.
- Fuel flow specifications are given in grams per minute [g/min]. This is an internationally accepted standard at vehicle manufacturing level. As development engineers deal with the weight or mass of air inducted by an engine not its expected power rating, the weight of fuel that an injector can provide is the pivotal measurement. Bosch does not rate fuel injectors related to expected engine power outcomes.

Bosch Does Not Warrant the Performance of its Components when they are Used with Certain Fuels or Fuel Additives.

- Bosch fuel injectors are designed for use with standard grade petrol. Subject to statutory warranties, Bosch does not warrant
 the performance characteristics or specifications of these fuel injectors if they are used with Alcohol or Ethanol based fuels or
 fuel additives that are corrosive.
- Fuel Injector 0 280 150 842 is designed for CNG operation only. Bosch has not tested this fuel injector for permanent service using liquid fuels, therefore it is not recommended for liquid fuel control systems. Control issues may result due to internal valve group sensitivity to viscosity differences between liquid and gaseous fuels.

Bosch Is Not Liable For Third Party Recommendations or Modifications

- Modification of fuel management systems should only be carried out by suitably qualified personnel. It is the responsibility of the
 purchaser/consumer to ensure the product is compatible with the fuel management system used to avoid damage and/or injury.
- In any event, subject to statutory warranties, Bosch is not liable for damage caused by third party recommendations or modifications.
- Modification of fuel management systems may cause a vehicle to contravene state or federal emission laws. Bosch does not
 endorse or recommend the modification of standard vehicles and does not accept liability for damages or consequential loss
 related to any modification undertaken.

FUEL INJECTORS

Purpose and Function.

Fuel injectors perform an important role in the accurate metering and atomisation of fuel. These electro-mechanical valves react in milli-seconds to open and close giving the electronic control unit optimal control over fuel flow to the engine.

Method of Measurement.

Fuel flow specifications are given in grams per minute, as this is an internationally accepted standard at vehicle manufacturing level. As vehicle development engineers deal with the weight or mass of air inducted by an engine not its expected power rating, the weight of fuel that an injector can provide is the pivotal measurement. Bosch does not rate fuel injectors related to expected engine power outcomes for this reason.

Power Ratings of Fuel Injectors. [Horsepower]

It has become an <u>aftermarket</u> performance industry practice to rate fuel injectors in relation to expected engine power outputs, mainly Horsepower.

As this method of measurement has many issues in relation to various calculation methods, accuracy, individual interpretation and overall relevance, Bosch as an Original Equipment supplier of fuel injectors, does not subscribe to this specification method.

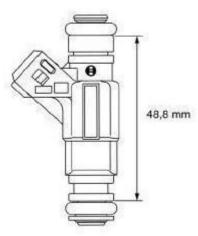
There are many design requirements taken into account when undertaking the design and manufacture of a fuel injector to suit a particular application. Further explanation can be found under the "Method of Measurement" heading in this section.

Effects of Fuel Pressure on Pintle Type Fuel Injectors.

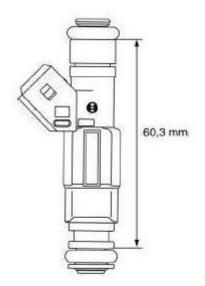
Fuel velocity through a pintle type fuel injector [type code EV 1] can dramatically affect its ability to atomise fuel. The profile of the pintle used in a fuel injector has a direct relationship to the operating pressure it is designed to operate under. Whilst Bosch produce various fuel injectors that may flow the same amount of fuel at a given specification, the system operating pressure will influence the pintle profile. Correct pressure will result in a well atomised spray, while insufficient pressure will result in a "hosing" effect. Excessive pressure will result in either "hosing" or a spray angle that is too large for the targeted area dependent on the pintle profile.

The consequence of excessive fuel pressure on a pintle type injector may well be that as the pressure is increased the mixture values of the engine may appear to get leaner. This is of course not the case, but the fuel being injected is no longer atomised and is entering the cylinder as a liquid mass. This will typically cause the Hydrocarbon [HC] values to rise due to the raw fuel exiting the cylinder, and the Carbon Monoxide [CO] to drop due to insufficient combustion.

Later design fuel injectors [type code EV 6] use "director plate" multi-orifice technology to better atomise fuel across various operating pressures. These injectors allow more flexibility in relation to operating pressures without compromising spray efficiency or fuel atomisation.


APPLICATION NOTE

Fuel Injector 0 280 150 842 is designed for CNG operation only. Bosch has not tested this fuel injector for permanent service using liquid fuels; therefore it is not recommended for liquid fuel control systems. Control issues may result due to internal valve group sensitivity to viscosity differences between liquid and gaseous fuels.


*** IMPORTANT NOTE**

Bosch fuel injectors have their flow rates defined in N-Heptane as part of their engineering specification. N-Heptane is a pure

chemical and does not have the same viscosity and density as standard petrol. Hence the N-Heptane flow rate figures stated should be used as a general guide for comparison purposes only.

EV6 - Standard Version

EV6 - Long Version

FUEL INJECTOR TECHNICAL DATA

Part Number	Flow Qty* g/min @ 3 Bar	Operating Pressure (Bar)	Resistance (ohms)	Design Type	Connector	Comments
0 280 150 036	364.3	2.0	2.4	EV 1	1 284 485 002	Hose Type
0 280 150 135	147.4	2.5	2.4	EV 1	9 122 067 011	Hose Type
0 280 150 166	185.7	2.5	2.4	EV 1	9 122 067 011	Hose Туре
0 280 150 215	187.3	2.5	16.2	EV 1	9 122 067 011	
0 280 150 363	479.8	2.7	0.7	EV 1	9 122 067 011	
0 280 150 403	402.8	2.7	2.3	EV 1	9 122 067 011	Manufacturer Specific Inlet
0 280 150 558	326.8	2.7	14.5	EV 1	9 122 067 011	
0 280 150 706	186.7	2.5	15.9	EV 1	9 122 067 011	
0 280 150 775	186.7	3.3	15.9	EV 1	9 122 067 011	
0 280 150 790	149.7	2.7	15.9	EV 1	9 122 067 011	
0 280 150 791	311.0	3.8	12.0	EV 1	9 122 067 011	
0 280 150 803	286.6	2.5	4.6	EV 1	9 122 067 011	
0 280 150 842	1207.2	1.0	4.6	EV 1	9 122 067 011	Refer Application Note
0 280 150 901	146.3	3.0	14.5	EV 1	9 122 067 011	
0 280 150 960	150.5	3.0	14.5	EV 1	9 122 067 011	
0 280 150 967	269.7	2.7	14.5	EV 1	9 122 067 011	
0 280 155 777	150.0	3.5	12.0	EV 6	9 122 067 011	Long Body
0 280 155 821	150.0	3.0	14.5	EV 6	9 122 067 011	Long Body
0 280 155 844	150.2	2.7	14.5	EV 6	9 122 067 011	Long Body
0 280 155 868	261.1	3.5	12.0	EV 6	9 122 067 011	Long Body
0 280 155 890	172.0	3.5	12.0	EV 6	9 122 067 011	Long Body
0 280 155 917	142.5	2.7	14.5	EV 6	Non-Bosch Plug	Long Body
0 280 155 931	187.0	3.5	12.0	EV 6	9 122 067 011	Long Body
0 280 155 968	310.0	3.8	12.0	EV 6	9 122 067 011	Dual Spray/Long Body
0 280 156 012	310.0	3.8	12.0	EV 6	9 122 067 011	Standard Body
0 280 156 013	172.0	3.5	12.0	EV 6	9 122 067 011	Long Body
0 280 156 123	213.0	2.7	14.5	EV 6	9 122 067 011	Dual Spray/Long Body
0 280 156 186	213.0	4.0	14.5	EV 6	9 122 067 011	Dual Spray/Long Body

FUEL INJECTOR TECHNICAL DATA

Part Number	Flow Qty* g/min @ 3 Bar	Operating Pressure (Bar)	Resistance (ohms)	Design Type	Connector	Comments
B 280 431 128	364.3	> 8	12	EV6	9 122 067 011	Standard body 25° spray angle
B 280 431 129	364.3	> 8	12	EV6	9 122 067 011	Standard body 70° spray angle
B 280 431 130	493.1	> 8	12	EV6	9 122 067 011	Standard body 25° spray angle
B 280 431 131	493.1	> 8	12	EV6	9 122 067 011	Standard body 70° spray angle

Revision 1 - December 2003